Text
Unit F2 Section 1
Simplifying Expressions

When simplifying expressions you should group terms which contain the same varaible.

Note

x and x2 must be treated as if they were different letters. You cannot add an x term to an x2 term. The + and – signs go with the term which follows.

Worked Examples

1

Simplify each expression below.

(a)

4a + 3a + 6 + 2

The terms which involve a can be grouped. Also the 6 and 2 can be added.

4a + 3a + 6 + 2 = 7a + 8

(b)

4a + 8b − 2a + 3b

The terms involving a are considered together, and then the terms involving b.

4a + 8b − 2a + 3b = 4a − 2a + 8b + 3b
= 2a + 11b
(c)

x2 + 5x − 8x + x2 − 4

Here the x and x2 must be treated as if they are different letters.

x2 + 5x − 8x + x2 − 4 = x2 + x2 + 5x − 8x − 4
= 2x2 − 3x − 4
(d)

8x + y − 4x − 6y

The different letters, x and y, must be considered in turn.

8x + y − 4x − 6y = 8x − 4x + y − 6y
= 4x − 5y

When a bracket is to be multiplied by a number or a letter, every term inside the bracket must be multiplied.

2

Remove the brackets from each expression below.

(a)

6(x + 5)

6(x + 5) = 6 × x + 6 × 5
= 6x + 30
(b)

3(2x + 7)

3(2x + 7) = 3 × 2x + 3 × 7
= 6x + 21
(c)

4(x − 3)

4(x − 3) = 4 × x − 4 × 3
= 4x − 12
(d)

x(x − 4)

x(x − 4) = x × xx × 4
= x2 − 4x

Exercises

Simplify each of these expressions.

(a)
a + 2a + 3a
(b)
3a + 2 + 4 + 6
(c)
3a + 2b + 8a + 4b
(d)
4x + 2y + 8y + y
(e)
5x + 2y + 8x − 3y
(f)
6a + 7b + 3b − 4a
(g)
4 + 6a − 3a + 2 + b
(h)
p + q + 2p − 8q + 3p
(i)
x + y − 8x + 2y
(j)
4x − 3p + 2p − 2x
(k)
7x − 4z + 8x − 5z
(l)
3z − 4x + 2z − 10x
(m)
3q − 4x + 8a − 2x + q
(n)
x + y + z − p − q − y
(o)
x + 6 + y + 4 + 2x − 3y
(p)
4x − 8q + 17x − 24q
(q)
−x + y + x + y
(r)
4x + 7y − 3x − 8y + x + y
(s)
−8x + 7y − 11x + 4y
(t)
6x − 18y + 17x − 4
(u)
x + y − 8x − 11y
(v)
4p + 8q − 8p − 4q

Simplify each of the following expressions.

(a)
2x2 + 3x + 4x2 + 5x
(b)
x2 + 8x + 5x + 10
(c)
x2 + 6x + 4x + x2
(d)
x2 + x + 10 + x + 4x2
(e)
5x2 − x − 6x2 + 8x
(f)
4x2 − 3y2 − x2 + y2
(g)
x2 + y2 − x − y + x2
(h)
4x2 − 7x + 1 + x2 + 4x − 11
(i)
x2 − y2 − x − y + 2x2 − 2y2
(j)
y2 + y − 4 + y + 4y2
(k)
ab + cd + 4ab
(l)
xy + xz + xy + 4xz
(m)
4ab + 7ab − 3ad
(n)
4pq − 3qr + 5pq

Remove the brackets from each expression below.

(a)
3(x + 5)
(b)
4(6 + x)
(c)
7(x + 2)
(d)
2(x + 6)
(e)
5(x + 2)
(f)
4(2x + 3)
(g)
5(3x + 2)
(h)
8(5x + 3)
(i)
7(x − 6)
(j)
8(5 − x)
(k)
4(2x − 7)
(l)
7(5x − 3)
(m)
6(3x − 5)
(n)
4(x − 2y)
(o)
5(x + 2y + 3z)
(p)
x(5 + x)
(q)
a(2 − a)
(r)
4(b − 3)
(s)
2x(x − 6)
(t)
4x(2x + 3)
(u)
3x(7 − 2x)
(v)
8x(x − 5)

Write as a single fraction in its simplest form

+